A Study on the Power Generation Capacity of Piezoelectric Energy Harvesters with Different Fixation Modes and Adjustment Methods
نویسندگان
چکیده
The power generation capacity of piezoelectric energy harvesters (PEHs) is not only related to the properties of the piezoelectric material, the vibration magnitude and the subsequent conditioning circuit, but also to the fixation modes and adjustment methods. In this paper, a commercial piezoelectric ceramic plate (PCP) in simply supported beam fixation mode and cantilever beam fixation mode were analyzed through finite element simulations and experiments, and furthermore, two ways of adjusting the natural frequency of PCP are studied and compared. As a result, some guidelines are proposed for the application of PCPs according to the simulation and experimental results which showed that: (1) the simply supported beam fixation mode is suitable for environments in which the exciting frequency exceeds 50 Hz, while the cantilever beam fixation mode fits the circumstance where the exciting frequency is below 50 Hz; (2) the maximum generation power a PCP produces in simply supported beam fixation mode is larger than that in cantilever beam fixation mode; (3) adjusting the weight of the mass block affixed on the PCP can change the natural frequency of PCP more efficiently than length-width ratio does.
منابع مشابه
Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملShape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...
متن کاملAutonomous Wireless Heat Energy Meter based on Piezoelectric Energy Harvester for Heat Energy Measurement in Building Complexes
This paper presents a platform for power autonomous wireless energy meter device using piezoelectric energy harvesters. This device can be mainly used for measuring the share of heat energy consumption in a fair manner in building complex with central heat energy system. In the suggested device, the piezoelectric energy harvester is also used as a flow-meter to reduce the power consumption of t...
متن کاملTopology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices
Due to developments in additive manufacturing, the production of piezoelectric materials with complex geometries is becoming viable and enabling the manufacturing of thicker harvesters. Therefore, in this study a piezoelectric harvesting device is modelled as a bimorph cantilever beam with a series connection and an intermediate metallic substrate using the plain strain hypothesis. On the other...
متن کاملVIBRATION ENERGY HARVESTERS OF LEAD-FREE (K,Na)NbO3 PIEZOELECTRIC THIN FILMS
In this study, we fabricated piezoelectric energy harvesters composed of lead-free (K,Na)NbO3 (KNN) thin films and compared the power generation performance with PZT-thin film energy harvesters. Both of the piezoelectric thin films were deposited on Pt/Ti/Si cantilevers by rf-sputtering. The KNN and PZT thin films had perovskite structure, and showed the relative dielectric constants of 744 and...
متن کامل